Exercices d'études de limites, avec corrigés, réponses ou aide Exercice1

Soit f la fonction définie sur
$$I = \frac{1}{2}$$
; $+ \infty$ [par $f(x) = \frac{1}{x - \cos x}$

Démontrez que pour tout nombre réel x supérieur à 2,
$$\frac{1}{x+1} \le f(x) \le \frac{1}{x-1}$$

En déduire
$$\lim_{x\to +\infty} f(x)$$

Exercice 2

Etudier les limites des fonctions suivantes.

$$1^{\circ}/\ f(x) = \frac{x^2 - x - 6}{x + 2}$$
 en $a = -2$, en $a = -\infty$.

$$2^{\circ}/f(x) = \frac{\sin 5x}{x}$$
 en $a = 0$

$$3^{\circ}/f(x) = \frac{1+x}{1-\sqrt{x}}$$
 en a = 1. Quelle déduction graphique peut-on faire ?

Exercice3

Etudiez la limite des suites (u_n) , (t_n) et (w_n) :

$$1^{\circ}/\;u_{n}=n\;(\;\text{-}1)^{\;n}\;\;;\qquad\qquad 2^{\circ}/\;t_{n}=\;\;\frac{(-1)^{n}}{-n}\;\;;\qquad\qquad 3^{\circ}/\;\;w_{n}=\;\sqrt{n+1}\;\;\text{-}\;\sqrt{n}$$

Corrigé de l'exercice 1

Pour tout x de I, $-1 \le \cos x \le 1$, d'où $-1 \le -\cos x \le 1$ et : $x - 1 \le x - \cos x \le x + 1$

Et, pour $x \ge 2$, on a $0 < x - 1 \le x - \cos x \le x + 1$,

D'où ,
$$\frac{1}{x+1} \le f(x) \le \frac{1}{x-1} \,, \qquad \text{la fonction inverse \'etant d\'ecroissante sur }]0 \;; + \infty[$$

Etude de limite en $+\infty$: $\lim_{x\to+\infty} x+1 = +\infty \ donc \ \lim_{x\to+\infty} \frac{1}{x+1} = 0$

$$\lim_{x \to +\infty} x - 1 = +\infty \ donc \ \lim_{x \to +\infty} \frac{1}{x - 1} = 0$$

Donc, en appliquant le théorème des gendarmes, on a : $\lim_{x\to+\infty} f(x) = 0$

Exercice 2 : aide et réponses

$$1^{\circ}/en \ a = -2$$
, $-2 \ est \ racine \ de \ x^2-x-6$, donc simplifier par $x+2$

en
$$a = -\infty$$
, $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{x} = -\infty$

2°/théorème de limite de fonction composée, ou poser X = 5x; $\lim_0 f = 5$

 $3^{\circ}/$ réponse $-\infty$, asymptote d'équation x = 1.

Exercice 3

 $\overline{\underline{I}^{\circ}/\text{ pas de }}$ limite $2^{\circ}/\text{ par encadrement}$; lim $t_n = 0$ $3^{\circ}/\text{ avec expression conjuguée}$: lim $w_n = 0$